Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Ethylammonium and diethylammonium salts of chloranilic acid

Hiroyuki Ishida* and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 7008530, Japan
Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 8 March 2000
Accepted 15 March 2000

Data validation number: IUC0000083
In the crystals of two title salts of chloranilic acid (2,5-dichloro-3,6-dihydroxy- p-benzoquinone), namely ethylammonium chloranilate, $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-}$, (I), and diethylammonium chloranilate, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{HCl}_{2} \mathrm{O}_{4}{ }^{-}$, (II), the chloranilate ions are present as a hydrogen-bonded dimer which has an inversion center. The ethylammonium and diethylammonium ions link the dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional hydrogen-bond network in (I) and a one-dimensional chain in (II).

Comment

Several hydrogen-bonded complexes of chloranilic acidamine (1/1) in the solid state were studied by IR (Issa et al., 1991; Habeeb et al., 1995). Habeeb et al. (1995) analyzed the IR data on the assumption that the complex consists of a pair of chloranilic acid and amine molecules, and reported that the hydrogen bond formed in the pair varies from an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ to an $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ type with decreasing $\mathrm{p} K_{a}$ values of the amines. Recently, we determined the structures of the chloranilic acidpyrazine ($1 / 1$) complex and morpholinium chloranilate (Ishida \& Kashino, 1999) and showed that these complexes are not present as a pair of chloranilic acid and amine molecules. In the pyrazine complex, pyrazine and chloranilic acid molecules are alternately arranged to form an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond chain. On the other hand, in the morpholinium salt, a chain of chloranilate ions is formed through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and morpholinium ions link the two chains through $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming the two-dimensional hydrogen-bond network. The complexes of chloranilic acidamine are, therefore, expected to be a noticeable system in view of our interest in hydrogen-bond patterns and their nature in the solid state. As part of an investigation of this system, we prepared the $1 / 1$ complexes of chloranilic acid with strong bases, ethylamine ($\mathrm{p} K_{a}=10.64$) and diethylamine $\left(\mathrm{p} K_{a}\right.$ $=10.94$), and determined their crystal structures.

In (I) and (II), an acid-base interaction involving a proton transfer is observed as expected from the high basicity of the present amines. The molecules of chloranilate ion form a
dimer connected by $\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $2-x, 1-y, 2-z$ for (I) and (i) $-x,-y$, $1-z$ for (II); Tables 2 and 4]. The H1 atom is also involved in an intramolecular hydrogen bond with O3.

(I) $R=\mathrm{EtNH}_{3}^{+}$
(II) $R=\mathrm{Et}_{2} \mathrm{NH}_{2}^{+}$

In (I), the ethylammonium ion links the three dimers of chloranilic acid through $\mathrm{N}-\mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{N}-\mathrm{H} 4 \cdots \mathrm{O} 4^{\text {iii }}$ hydrogen bonds [symmetry codes: (ii) $1-x, 1-y, 1-z$; (iii) $1-x, 1-y,-z]$, and a bifurcated hydrogen bond of $\mathrm{N}-$ $\mathrm{H} 2 \cdots \mathrm{O} 1$ and $\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 4$, forming a three-dimensional hydrogen-bond network. A weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction between the methyl group of the cation and the anion is observed $[\mathrm{C} 8-\mathrm{H} 71.01$ (3), $\mathrm{H} 7 \cdots \mathrm{O} 12.56(3), \mathrm{C} 8 \cdots \mathrm{O} 1$ 3.340 (4) \AA and $\mathrm{C} 8-\mathrm{H} 7 \cdots$ O1 134 (2) ${ }^{\circ}$], which may stabilize the orientation of $\mathrm{C} 8-\mathrm{C} 7$ bond. In (II), the diethylammonium ions related by an inversion center link the two dimers of chloranilic acid through a bifurcated hydrogen bond of $\mathrm{N}-$ $\mathrm{H} 2 \cdots \mathrm{O} 1$ and $\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 4$, and an $\mathrm{N}-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{i}}$ hydrogen bond [as in (i) for (I) above], forming an infinite chain along [211]. The shortest contact between the chains is $\mathrm{O} 2 \cdots \mathrm{H} 4^{\mathrm{iv}}$ 2.63 (3) $\AA \quad\left[\mathrm{C} 7-\mathrm{H} 4 \quad 0.97(3), \quad \mathrm{O} 2 \cdots \mathrm{C}^{\text {iv }} \quad 3.483(4) \AA\right.$, $\mathrm{O} 2 \cdots \mathrm{H} 4^{\text {iv }}-\mathrm{C} 7^{\text {iv }} 146(2)^{\circ}$; symmetry code: (iv) $1-x,-y$, $2-z]$.

The anions form dimers in both salts, but the $\mathrm{O} 2 \cdots \mathrm{O} 3$ contact distance between the anions in the dimer in (I), 2.797 (2) \AA, is rather longer than in (II), 2.677 (2) \AA. The O3 atom in (I) is linked to the cation through a hydrogen bond, while the O3 atom in (II) does not participate in such an additional hydrogen bond. This may cause the difference in the $\mathrm{O} 2 \cdots \mathrm{O} 3$ distance between (I) and (II).

Experimental

Crystals of the title complexes were prepared by slow evaporation from acetonitrile solutions of chloranilic acid with ethylamine or diethylamine (molar ratio 1:1) at room temperature.

Compound (I)

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{HO}_{4} \mathrm{Cl}_{2}{ }^{-}$	$Z=2$
$M_{r}=254.07$	$D_{x}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.201(2) \AA$	Cell parameters from 25
$b=10.348(2) \AA$	reflections
$c=7.190(2) \AA$	$\theta=10.6-11.5^{\circ}$
$\alpha=95.59(2)^{\circ}$	$\mu=0.608 \mathrm{~mm}^{-1}$
$\beta=92.95(2)^{\circ}$	$T=303 \mathrm{~K}$
$\gamma=98.47(2)^{\circ}$	Plate, brown
$V=526.3(2) \AA^{3}$	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.898, T_{\text {max }}=0.941$
2620 measured reflections
2425 independent reflections
1402 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 9 \\
& k=-13 \rightarrow 13 \\
& l=-9 \rightarrow 9 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.042$
$w R\left(F^{2}\right)=0.050$
$S=1.29$
2424 reflections
172 parameters

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00002\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.01$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.725(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.540(3)$
$\mathrm{Cl} 2-\mathrm{C} 5$	$1.737(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.334(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.215(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.502(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.336(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.396(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.251(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.394(3)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.246(2)$	$\mathrm{N}-\mathrm{C} 7$	$1.490(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.453(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.497(4)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$111.0(2)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.92 (3)	2.10 (3)	2.797 (2)	131 (3)
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.92 (3)	2.04 (3)	2.797 (2)	120 (2)
$\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.89 (3)	2.16 (3)	2.953 (3)	147 (2)
$\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 4$	0.89 (3)	2.26 (3)	2.932 (3)	132 (2)
$\mathrm{N}-\mathrm{H} 3 \cdots \mathrm{O} 3^{\text {ii }}$	1.06 (3)	1.87 (3)	2.883 (3)	158 (2)
$\mathrm{N}-\mathrm{H} 4 \cdots \mathrm{O} 4^{\text {iii }}$	0.96 (3)	1.94 (3)	2.813 (3)	152 (3)

Symmetry codes: (i) $2-x, 1-y, 2-z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x, 1-y,-z$.

Compound (II)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{HO}_{4} \mathrm{Cl}_{2}{ }^{-}$	$Z=2$
$M_{r}=282.12$	$D_{x}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.159(3) \AA$	Cell parameters from 25
$b=9.617(2) \AA$	reflections
$c=8.979(3) \AA$	$\theta=10.7-12.4^{\circ}$
$\alpha=108.17(2)^{\circ}$	$\mu=0.506 \mathrm{~mm}^{-1}$
$\beta=111.27(3)^{\circ}$	$T=302 \mathrm{~K}$
$\gamma=103.78(2)^{\circ}$	Prismatic, dark purple
$V=642.8(5) \AA^{\circ}$	$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$

Data collection

Rigaku AFC-5 R diffractometer	$R_{\text {int }}=0.016$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=0 \rightarrow 11$
(North et al., 1968)	$k=-12 \rightarrow 12$
$T_{\min }=0.839, T_{\max }=0.859$	$l=-11 \rightarrow 10$
3144 measured reflections	3 standard reflections
2958 independent reflections	every 97 reflections
1793 reflections with $I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
All H -atom parameters refined
$R(F)=0.053$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00012\left|F_{o}\right|^{2}\right]$
$w R\left(F^{2}\right)=0.091$
$(\Delta / \sigma)_{\text {max }}=0.01$
$S=1.64$
$\Delta \rho_{\max }=0.55 \mathrm{e}^{\AA^{-3}}$
2956 reflections
206 parameters
Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{C} 1-\mathrm{C} 2$	$1.715(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.336(3)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.725(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.501(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.215(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.411(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.325(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.387(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.235(2)$	$\mathrm{N}-\mathrm{C} 7$	$1.488(4)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.255(2)$	$\mathrm{N}-\mathrm{C} 9$	$1.492(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.454(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.492(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.534(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.487(5)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$110.9(3)$	$\mathrm{N}-\mathrm{C} 9-\mathrm{C} 10$	$111.2(2)$

Table 4
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(3)$	$1.94(3)$	$2.677(2)$	$148(3)$
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.82(3)$	$2.23(3)$	$2.649(2)$	$112(3)$
$\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 4$	$0.97(3)$	$2.00(3)$	$2.910(3)$	$155(2)$
$\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 1$	$0.97(3)$	$2.33(3)$	$2.979(3)$	$124(2)$
$\mathrm{N}-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}$	$0.93(2)$	$1.95(3)$	$2.838(3)$	$160(2)$

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $2-x, 1-y, 2-z$.

H atoms were found in a difference Fourier map and were refined isotropically; $\mathrm{C}-\mathrm{H}=0.94$ (3) -1.14 (2), $\mathrm{N}-\mathrm{H}=0.89$ (3) -1.06 (3) and $\mathrm{O}-\mathrm{H}=0.92$ (3) \AA for (I), and $\mathrm{C}-\mathrm{H}=0.94$ (4)-1.05 (4), $\mathrm{N}-\mathrm{H}=$ 0.93 (2) and 0.97 (3), and $\mathrm{O}-\mathrm{H}=0.82$ (3) \AA for (II).

For (I) and (II), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN; program(s) used to solve structure: SAPI91 (Fan, 1991) for (I) and SIR92 (Altomare et al., 1993) for (II).

This work was supported by a Grant-in-Aid for Scientific Research (B) No. 10440208 from the Ministry of Education, Science, Sports and Culture, Japan.

electronic papers

References

Altomare, A., Cascarano, M., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
Habeeb, M. M., Alwakil, H. A., El-Dissouky, A. \& Fattab, H. A. (1995). Pol. J. Chem. 69, 1428-1436.

Ishida, H. \& Kashino, S. (1999). Acta Cryst. C55, 1923-1926.
Issa, Y. M., Darwish, N. A. \& Hassib, H. B. (1991). Egypt. J. Chem. 34, 87-93.
Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows (Version 1.03) and Single Crystal Structure Analysis Software (Version 1.04). MSC,

